Monday, February 26th, 11h30, Room 454 A, Condorcet Building.
Uwe Thiele
Head of working group self-organization and complexity
Westfälische Wilhelms-Universität Münster, Germany
Nonreciprocal interactions – drops of active liquids and arrested coarsening
After briefly introducing the recent effort of physicists and mathematicians alike to break Newton’s third law to make systems active [1], we discuss particular continuum models featuring nonreciprocal interactions that break the gradient dynamics structure of well-known models. First, a thin-film model for partially wetting drops on solid substrates is made active by incorporating a nonreciprocal coupling to a polarisation field in the form of self-propulsion and active stress [2]. We show that the employed polarisation-surface coupling results in (hysteretic) transitions between resting and moving dops, the splitting of drops, and chiral motion. Second, we introduce a nonreciprocal Cahn-Hilliard model [3,4], show that all its linear stability thresholds may be mapped onto the ones of a Turing-type reaction-diffusion system [4], and indicate how nonreciprocity arrests or suppresses coarsening, and gives rise to localised and/or oscillatory states [4]. Finally, we argue that the nonrecipocal Cahn-Hilliard model is of universal importance as it corresponds to an important amplitude equation, namely, for a conserved Hopf instability that itself plays an important role in a classification of linear instabilities based on three features: small- vs large-scale, stationary vs. oscillatory, and with vs. without conservation law [5]. The talk concludes with a brief outlook.
[1] Y. X. Chen and T. Kolokolnikov, J. R. Soc. Interface 11, 20131208 (2014); A. V. Ivlev, J. Bartnick, M. Heinen, C. R. Du, V. Nosenko, and H. Löwen, Phys. Rev. X 5, 011035 (2015); M. Fruchart, R. Hanai, P. B. Littlewood, and V. Vitelli, Nature 592, 363 (2021); M. J. Bowick, N. Fakhri, M. C. Marchetti, and S. Ramaswamy, Phys. Rev. X 12, 010501 (2022).
[2] S. Trinschek, F. Stegemerten, K. John, and U. Thiele, Phys. Rev. E 101, 062802 (2020); F. Stegemerten, K. John, and U. Thiele, Soft Matter 18, 5823 (2022).
[3] Z. H. You, A. Baskaran, and M. C. Marchetti, Proc. Natl. Acad. Sci. U. S. A. 117, 19767 (2020); S. Saha, J. Agudo-Canalejo, and R. Golestanian, Phys. Rev. X 10, 041009 (2020);
[4] T. Frohoff-Hülsmann, J. Wrembel, and U. Thiele, Phys. Rev. E 103, 042602 (2021); T. Frohoff-Hülsmann and U. Thiele, IMA J. Appl. Math. 86, 924 (2021); T. Frohoff-Hülsmann, U. Thiele, and L. M. Pismen, Philos. Trans. R. Soc. A 381, 20220087 (2023).
[5] T. Frohoff-Hülsmann and U. Thiele, Phys. Rev. Lett. 131, 107201 (2023).
All papers/preprints of the group can be downloaded at https://www.uwethiele.de/publ.html
À lire aussi
Comment un soliton se propage-t-il dans un milieu désordonné ?
Un soliton est une onde confinée dans l'espace qui se propage sur de longues distances sans se déformer, car les effets de dispersion (qui étalent l'onde) sont compensés par les effets non linéaires (qui raidissent son front). Les solitons apparaissent dans de...
Un modèle simple de lévitation magnétique
Comment se fait-il qu’un aimant puisse léviter simplement en étant placé à proximité d'un autre aimant en rotation rapide ?Récemment, une nouvelle manière de faire de la lévitation magnétique – c’est-à-dire de maintenir un objet dans les airs en utilisant les...
Ça cavite sur France Culture
L'émission radiophonique "La science, CQFD" du 8 octobre dernier s'intéressait à la bioacoustique végétale, un domaine dans lequel la cavitation joue un rôle important. Ce fut l'occasion d'un reportage au laboratoire MSC, auprès de nos experts Valentin Leroy et Adrien...
Lien entre la structure et la rhéologie de dispersions de feuillets d’oxyde de graphène
Des chercheurs du laboratoire MSC ont étudié la structure de dispersions de feuillets d'oxyde de graphène en fonction de leur concentration et du pH. L'étude a notamment montré qu'une augmentation du pH donnait des feuillets moins larges, ce qui s'accompagnait d'une...