Nuclear mechanics as a diagnostic and therapeutic target for glioblastoma
Glioblastomas (GBMs) are the most lethal primary brain tumours. The absence of effective therapies is mainly due to tumour invasion and to the resistance of invading cells to treatments such as radio and chemo-therapies. In GBMs, lamin proteins that control nuclear envelope stiffness, have recently emerged as potential markers of aggressiveness and tumourigenicity. Nuclear mechanics has appeared as a key determinant of cancer cell invasion leading us to hypothesize that genes controlling nuclear mechanics of GBM cells may be used as diagnostic tools and potential therapeutic targets to improve the prognostic of GBMs.
The working hypotheses of this M2 internship project is that alterations in nuclear mechanics contribute to GBM aggressiveness and directly influence cell invasive behaviour. The intern will first use clinically annotated primary patient-derived GBM cells and rheological techniques (optical tweezers, microfluidics) to measure nuclear morphology and mechanics (Figure). Second, he/she will modulate the expression levels of lamins to modify both nuclear mechanics and GBM cell invasion and test whether lamins could be used as potential molecular targets to control GBM aggressiveness.
Figure: A. Comparison of the morphology of the nucleus in two different GBM cell lines (U3039 and U 3031). B. Measurements of the viscoelasticity of the nucleus using indentation of GBM nuclei in living cells. A. Images showing a typical nuclear indentation experiment. The white cross represents the centre of the optical tweezers in which the 2 µm- diameter bead is trapped (green). The nucleus (blue) is indented by moving the cell towards the right (white arrow) which displaces the bead away from the trap centre of a distance ∆x. C. Scheme of the bead in the optical trap. D. Force-indentation curve showing the force F as a function of the indentation d in the experiment shown in B.
Key words: nuclear envelope; lamin A/C; lamin B1; lamin B2; LINC complex; optical tweezers; microfluidic; cancer; glioblastoma; cytoskeleton; migration; invasion.
Collaborators: Sandrine Etienne-Manneville (Institut Pasteur, Paris), Catherine Villard (Institut Curie, Paris), Wang Xi (IJM, Paris), Nicolas Borghi (IJM, Paris)
Laboratory: Matière et Systèmes Complexes, UMR 7057 CNRS-Université de Paris, 10 Rue Alice Domon et Léonie Duquet, 75013 Paris
Contact: Jean-Baptiste Manneville (Jean-Baptiste.Manneville@u-paris.fr)
À lire aussi
Comment un soliton se propage-t-il dans un milieu désordonné ?
Un soliton est une onde confinée dans l'espace qui se propage sur de longues distances sans se déformer, car les effets de dispersion (qui étalent l'onde) sont compensés par les effets non linéaires (qui raidissent son front). Les solitons apparaissent dans de...
Un modèle simple de lévitation magnétique
Comment se fait-il qu’un aimant puisse léviter simplement en étant placé à proximité d'un autre aimant en rotation rapide ?Récemment, une nouvelle manière de faire de la lévitation magnétique – c’est-à-dire de maintenir un objet dans les airs en utilisant les...
Ça cavite sur France Culture
L'émission radiophonique "La science, CQFD" du 8 octobre dernier s'intéressait à la bioacoustique végétale, un domaine dans lequel la cavitation joue un rôle important. Ce fut l'occasion d'un reportage au laboratoire MSC, auprès de nos experts Valentin Leroy et Adrien...
Lien entre la structure et la rhéologie de dispersions de feuillets d’oxyde de graphène
Des chercheurs du laboratoire MSC ont étudié la structure de dispersions de feuillets d'oxyde de graphène en fonction de leur concentration et du pH. L'étude a notamment montré qu'une augmentation du pH donnait des feuillets moins larges, ce qui s'accompagnait d'une...