Monday, September 9th, 11h30, Room 454 A, Condorcet Building.
Mingming Wu
Biofluidics Lab
Biological and Environmental Engineering,
Cornell University, Ithaca, NY 14850, USA.
Decoding physical principles of cell migration
Abstract:
In living systems, cells are constantly moving, sensing, adapting and migrating to where life is better. Bacteria move to where food is abundant for survival, immune cells migrate to where pathogenic attacks take place. A central question to cell migration is: can we predict where cells go next when subjected to a known physical and chemical environment? The answer to this question is important for solving a number of problems in health (e.g. cancer metastasis and wound healing) and environment (e. g. algal blooms). In this talk, I will illustrate a set of emerging principles that single and a group of cells use to migrate under controlled chemical and physical environment. We use microfluidics to build well defined environment for cells, and optical imaging to follow cell dynamics. When subjected to chemical gradients, we find that bacterial and animal cell follow the gradients via a ligand – receptor binding kinetics. When subjected to mechanical stresses, both cell types exhibit a much more complex behavior. In fluids, swimming cells exhibit rheotaxis via hydrodynamic interactions. In biological matrices, they modify the matrix architecture to promote cell migration. I will use Escherichia coli bacteria and breast tumor cells as examples for these studies. Finally, I will discuss about the challenges along the way formulating basic physical principles for cell migration, in particular, when cells are surrounded by a physiologically realistic environment.
Short Bio:
Mingming Wu directs the micro/nano/biofluidics lab in the department of biological and environmental engineering department at Cornell University. Her lab is best known for developing micro-scale devices for exploring cellular behavior and their co-evolvement with the microenvironment. The problems of choices are motivated by contemporary problems in health and environment. Current research projects include cancer metastasis, sperm cell migration and bacterial motility. Dr. Wu received B. S. and PhD in physics, in Nanjing University and the Ohio State University respectively. Prior to joining Cornell, she was a postdoctoral researcher at Ecole Polytechnique in France and University of California at Santa Barbara.
À lire aussi
Comment un soliton se propage-t-il dans un milieu désordonné ?
Un soliton est une onde confinée dans l'espace qui se propage sur de longues distances sans se déformer, car les effets de dispersion (qui étalent l'onde) sont compensés par les effets non linéaires (qui raidissent son front). Les solitons apparaissent dans de...
Un modèle simple de lévitation magnétique
Comment se fait-il qu’un aimant puisse léviter simplement en étant placé à proximité d'un autre aimant en rotation rapide ?Récemment, une nouvelle manière de faire de la lévitation magnétique – c’est-à-dire de maintenir un objet dans les airs en utilisant les...
Ça cavite sur France Culture
L'émission radiophonique "La science, CQFD" du 8 octobre dernier s'intéressait à la bioacoustique végétale, un domaine dans lequel la cavitation joue un rôle important. Ce fut l'occasion d'un reportage au laboratoire MSC, auprès de nos experts Valentin Leroy et Adrien...
Lien entre la structure et la rhéologie de dispersions de feuillets d’oxyde de graphène
Des chercheurs du laboratoire MSC ont étudié la structure de dispersions de feuillets d'oxyde de graphène en fonction de leur concentration et du pH. L'étude a notamment montré qu'une augmentation du pH donnait des feuillets moins larges, ce qui s'accompagnait d'une...