Quand :
26 février 2024 @ 11:30 – 12:30
2024-02-26T11:30:00+01:00
2024-02-26T12:30:00+01:00
Où :
Bâtiment Condorcet
454 A

Monday, February 26th, 11h30, Room 454 A, Condorcet Building.

Uwe Thiele

Head of working group self-organization and complexity

Westfälische Wilhelms-Universität Münster, Germany

Nonreciprocal interactions – drops of active liquids and arrested coarsening

After briefly introducing the recent effort of physicists and mathematicians alike to break Newton’s third law to make systems active [1], we discuss particular continuum models featuring nonreciprocal interactions that break the gradient dynamics structure of well-known models. First, a thin-film model for partially wetting drops on solid substrates is made active by incorporating a nonreciprocal coupling to a polarisation field in the form of self-propulsion and active stress [2]. We show that the employed polarisation-surface coupling results in (hysteretic) transitions between resting and moving dops, the splitting of drops, and chiral motion. Second, we introduce a nonreciprocal Cahn-Hilliard model [3,4], show that all its linear stability thresholds may be mapped onto the ones of a Turing-type reaction-diffusion system [4], and indicate how nonreciprocity arrests or suppresses coarsening, and gives rise to localised and/or oscillatory states [4]. Finally, we argue that the nonrecipocal Cahn-Hilliard model is of universal importance as it corresponds to an important amplitude equation, namely, for a conserved Hopf instability that itself plays an important role in a classification of linear instabilities based on three features: small- vs large-scale, stationary vs. oscillatory, and with vs. without conservation law [5]. The talk concludes with a brief outlook.

[1] Y. X. Chen and T. Kolokolnikov, J. R. Soc. Interface 11, 20131208 (2014); A. V. Ivlev, J. Bartnick, M. Heinen, C. R. Du, V. Nosenko, and H. Löwen, Phys. Rev. X 5, 011035 (2015); M. Fruchart, R. Hanai, P. B. Littlewood, and V. Vitelli, Nature 592, 363 (2021); M. J. Bowick, N. Fakhri, M. C. Marchetti, and S. Ramaswamy, Phys. Rev. X 12, 010501 (2022).
[2] S. Trinschek, F. Stegemerten, K. John, and U. Thiele, Phys. Rev. E 101, 062802 (2020); F. Stegemerten, K. John, and U. Thiele, Soft Matter 18, 5823 (2022).
[3] Z. H. You, A. Baskaran, and M. C. Marchetti, Proc. Natl. Acad. Sci. U. S. A. 117, 19767 (2020); S. Saha, J. Agudo-Canalejo, and R. Golestanian, Phys. Rev. X 10, 041009 (2020);
[4] T. Frohoff-Hülsmann, J. Wrembel, and U. Thiele, Phys. Rev. E 103, 042602 (2021); T. Frohoff-Hülsmann and U. Thiele, IMA J. Appl. Math. 86, 924 (2021); T. Frohoff-Hülsmann, U. Thiele, and L. M. Pismen, Philos. Trans. R. Soc. A 381, 20220087 (2023).
[5] T. Frohoff-Hülsmann and U. Thiele, Phys. Rev. Lett. 131, 107201 (2023).
All papers/preprints of the group can be downloaded at https://www.uwethiele.de/publ.html

 

À lire aussi

Formation de singularités en érosion par dissolution

Formation de singularités en érosion par dissolution

En s’écoulant sur des roches solubles, l’eau peut créer dans la nature des motifs remarquables, qui présentent souvent des pointes acérées. Les coups de gouge, dépressions concaves entourées de crêtes, en sont un exemple commun. En combinant mesures de terrain, modèle...

La mécanique des plantes grimpantes décryptée

La mécanique des plantes grimpantes décryptée

On a vu récemment fleurir des parasols végétaux sur les parvis de gare de la capitale (et ailleurs). Une structure ressemblant à un parapluie a été conçue pour soutenir et guider la croissance de la plante, de manière à ce qu'elle puisse pousser afin de créer un îlot...